Thick-restart Lanczos method for electronic structure calculations
نویسندگان
چکیده
منابع مشابه
TRPL+K: Thick-Restart Preconditioned Lanczos+K Method for Large Symmetric Eigenvalue Problems
The Lanczos method is one of the standard approaches for computing a few eigenpairs of a large, sparse, symmetric matrix. It is typically used with restarting to avoid unbounded growth of memory and computational requirements. Thick-restart Lanczos is a popular restarted variant because of its simplicity and numerically robustness. However, convergence can be slow for highly clustered eigenvalu...
متن کاملA Communication-Avoiding Thick-Restart Lanczos Method on a Distributed-Memory System
The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale Hermitian eigenvalue problems. On a modern computer, communication can dominate the solution time of TRLan. To enhance the performance of TRLan, we develop CA-TRLan that integrates communication-avoiding techniques into TRLan. To study the numerical stability and solution time of CA-TRLan, we conduct numeric...
متن کاملThick-Restart Lanczos Method for Symmetric Eigenvalue Problems
For real symmetric eigenvalue problems, there are a number of algorithms that are mathematically equivalent, for example, the Lanczos algorithm, the Arnoldi method and the unpreconditioned Davidson method. The Lanczos algorithm is often preferred because it uses signiicantly fewer arithmetic operations per iteration. To limit the maximum memory usage, these algorithms are often restarted. In re...
متن کاملAn effective method for eigen-problem solution of fluid-structure systems
Efficient mode shape extraction of fluid-structure systems is of particular interest in engineering. An efficient modified version of unsymmetric Lanczos method is proposed in this paper. The original unsymmetric Lanczos method was applied to general form of unsymmetric matrices, while the proposed method is developed particularly for the fluid-structure matrices. The method provides us with si...
متن کاملExpansion of random field gradients using hierarchical matrices
We present two expansions for the gradient of a random field. In the first approach, we differentiate its truncated KarhunenLoève expansion. In the second approach, the Karhunen-Loève expansion of the random field gradient is computed directly. Both strategies require the solution of dense, symmetric matrix eigenvalue problems which can be handled efficiently by combining hierachical matrix tec...
متن کامل